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Abstract

In this paper we consider the problem of ranking (partitioning) k populations ac-

cording to the parameter which is defined as functionals of the distribution functions

on the underlying populations. We obtain minimax rules for general loss functions,

Bayes rules for some specific loss functions and propose approximate non-randorrized

minimax rules. We also derive restricted minimax rules for selecting a subset of pop-

ulations which are better than a control. Some nonparametric "optimal" tests are

derived for different hypotheses written in terms of the parameter as a functional of

the underlying distribution function.

Key Words: Selection and ranking, nonparametric, comparison with a control, test-

ing, minimax decision rules. .

AMS 1985 subject classification: 62G99. 62C20.

1 Introduction

In practice, the experimenter is often faced with the problem of comparing k populations, for

example, comparing k different treatments in clinical trials, or comparing k different varieties

*This research was supported in part by the Office of Naval Research Contract N00014-88-K-017 and

NSF Grants DMS-86066964, DMS-8702620 at Purdue University.
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of grain in an agricultural experiment. The classical tests of homogeneity never answer the

question "what next?" if the hypothesis is rejected. Mosteller (1948) and Paulson (1949),

and Bahadur (1950) were among the first research workers to recognize the inadequacy of

such tests for homogeneity and to reformulate the problem as a multiple decision problem

concerned with the ranking and selection of k populations.

One approach pioneered by Bechhofer (1954) has been to allow the experimenter to

select one population which is guaranteed to be of interest to him with a fixed probability

P*, whenever the unknown parameters lie outside some subset of the parameter space. This

has been termed as the indifference zone approach. In contrast to the indifference zone

approach, Gupta (1956) proposed a formulation in which the experimenter obtains a subset

of k populations for which there is a fixed minimum probability P*, over the entire parameter

space, that the population of interest is selected. For an extensive review of the subset

selection methodology see Gupta and Panchapakesen (1979) and Gupta and Panchapakesen

(1986).

In this paper we consider a decision theoretic formulation of the ranking problem in

the nonparametric setup. Let the distribution function F on R P be characterized by the

functional O(F) = fgdF, where g is a known real-valued bounded function on R P and

0 = O(F) is the parameter of interest.

Consider the following examples.

(1) SELECTING THE BEST:

Company A produces a product whose observable quality is represented by a random

variable Y. Company B has discovered b" , w products of the same "type" and wants to

select one of those k products which will beat the product of company A in the market. Let

us suppose X(i) represents the quality of the i th product of company B for i = 1 . , k.

A customer will select the product of the company A instead of a specified ith product of
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company B if Y is grater than X(i). Hence in this problem the parameter of interest is

0(i) = Pr(X(i) > Y) and company B wants to select the product for which 0(i) is largest.

Here g is the distribution function of Y.

The function Pr(X < Y) is of considerable importance in many practical situations, such

as clinical trials, genetics, and reliability. For the estimation of the parameter Pr(X < Y)

and for related references see Brownie (1988), Simnoff, Hochber and Reiser (1986). In Section

3 "optimal" non-parametric tests for the various hypothesis for the parameter 0 = Pr(X <

Y) are derived.

(2) REGRESSION:

Let X = (XI, X 2 ,...,.Xp) be a p dimensional random vector which has the distribution

function F. We want to test whether x, is well approximated by h(x 2 , x 3,. . xp), where h

is a known real-valued function on R(P- 1). Define O(F) = f d(X - h(X 2 , X 3,...,X,)dF,

where d is an appropriate non-negative function on R. In this situation g(x) = d(xi -

h(x 2, x3,...,xp)). We may want to test

Ho : O(F) < 00 vs H : 9(F) > o,

where 00 is a known constant.

(3) SELECTING A SUBSET OF THE POPULATIONS CONTAINING A POPULATION

BETTER THAN THE CONTROL:

Let x(a) be the a th quantile of the control. There are k populations, III, R12, r k

The population Hi is associated with the distribution function Fi on R, for i = 1, 2'..... k.

We say the population [i is

"good" if f00 dFi > a

and

"bad" if J_ dF > a -6.
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In this problem g(x) = I(_,,)(x).

It is important to consider a non-parametric model, since often in practice, especially

for the new treatments, there is not much information which could lead us to assume some

parametric model.

In the next section, we will derive a minimax procedure for the selection and ranking

problem, we also obtain a restricted minimax procedure for the problem when the populations

are compared with a control.

Our procedures, however, are randomized. We feel that the randomization is unavoidable

in the present situation, since as is known, certain properties of the risk function can be

improved only by using randomization. In some examples we will also prove that these

procedures are unique and admissible. In Section 4 we will derive some "optimal" non-

parametric tests.

Most of the existing results on non-parametric models, in general are asymptotic. The

finite sample results, which are presented here may be of use to check the optimality of the

existing procedures (tests) or for proving optimality of new tests.

It should be pointed out that results presented here do not apply to the problem of

selecting the population with the largest a th quantile ( or largest location parameter). Also

these results do not apply to the problem of selecting a subset of the population which

contains the population with largest a th quantile (or location parameter). Considerable

amount of work has been done on those kinds of problems. See Barlow and Gupta (1969),

Gupta and McDonald (1970), Gupta and Huang (1974), Rizvi and Sobel (1967), Sobel

(1967). An extensive review of non-parametric selection and ranking procedures is in Desu

and Bristol (1986).
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2 Selection And Ranking

There are k populations II, 2 .. ., Ik. The population [1i is associated with the cumulative

distribution function Fi(.) on RP, for i = 1, 2, ... , k. The population Hi is characterized by

the real-valued function,

O(F ) = fg(x)dF(x)

where g is a known, real-valued bounded function on RP.

Define Oi O(Fi) for i= 1,2,...,k and

F = (F, F2,..., Fk), 0 = O(F) = (01, 02 ,..., Ok).

Let

F = {(F, F2 ,... ,Fk): F is distribution on RP }

and

E = {(O(F),O(F2),... ,0(Fk) : Fi is distribution on/' }.

Let Xil, X, 2 ,. . . , Xi,. be the n independent random vectors from population Ii.

Problem (I) General Ranking Problem:

On the basis of a set of observations we wish to partition the set of the co-ordinate

values of the k dimensional parameter vector 0 = (01, 02,..., Ok)' in to r disjoint subsets, say

S1, S2, ... , , such that S1 contains the t, largest components of 0, S2 contains next t 2

largest components of 0 and ... , Sr contains the tr smallest components of 0. The size of

each subset is fixed in advance and ,=, ti = k.

Let the the action space A, be the set of all possible partition of the set {1,2,. k} in to r

subsets S, S2 ,.... , S, of size t1 , t 2 ,..., t, respectively. For a E A let a = (Sai, Sa,2,. Sa.).

A decision rule 6 = 6(.)

6(.) = {6(.,a) : aEA} ; (1)



is a measurable function on Rn pk , such that

0< 6(.,1a)

and

6 S(x, a)= 1.
aEA

If X = x is observed then the decision rule 8 takes the action a with the probability

(xa) .

Let E be the class of all decision rules. We will consider the loss functions which are

"invariant", "non-negative" and "monotone." This type of loss structure is considered by

several authors, for example, see Eaton (1967), Gupta and Mieske (1984). Let L(.,.) , a real

valued measurable function, be a loss function on 0 x A. Hence if one takes action a and if

the true parameter is 0 then the loss is L(0, a). Formally we write the conditions on the loss

function as:

[1] L(O,a) > 0

[2] For every parmutation 7r on

{1,2,...,k} L(7r(O), r(a)) = L(O,a) Va E A

[3] Let O, > Oj and a = (S1,S2 - ... S,), a' = (S',S,.... ,S') such that, for r, and r2

such that I < r, r2 < rVt r, and ir 2 St = S'and S"1 = (S U- {j})U{iSj, '2

(Sr 2-{i)U {j}), then,

L(O,a) <_ L(O,a');

[4] For every a E A L(O, a) is a continuous function of 0 .
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The risk function of the decision rule 6 is given by

R1 (F,,) = EFL(O(F),b)

= _ L(O(F),6)EFS(X,a).
aEA

A minimax rule will be derived for the problem described above.

Problem (II) Selecting "good" populations:

We describe this problem as in Lehmann (1961). Let there be a fixed value 00 and

let A be a fixed positive real number. The population [li is said to be good (positive) if

Oi(F) _ 00 +A and bad if Oi(F) < 0o. We wish to select a subset of the populations containing

good populations, provided there exists at least one good population.

For this problem we will consider two loss functions, one will guard against selecting too

many bad populations and the other one will make sure that good populations are being

selected. As in Lehmann (1961) the following criteria will be used for measuring how well

the procedure carries out the task,

(Si) The expected number of good populations.

(S2) The expected proportion of good populations.

(S3) The probability of selecting at least one good population, provided there exists one.

(S4) The probability of including the "best" population provided it is "good".

The following criteria are considered for measuring the performance of the procedure.

(RI) The number of bad populations in the selected subset.

(R2) The proportion of bad population in the selected subset.

For a subset selection procedure 6, S(O(F), ) is given by (S1), (S2), (S3) or (S4) and

R(O(F),b) is given by (R1) or (R2). Let

' = f F: O(Fi) > 0o + A forsome i, 1 < i < k}

and D, be the class of all procedures for selecting a subset of good populations. We will
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construct a restricted minimax procedure for this problem, that is, we will construct a

procedure 6.. E Ah which minimizes sup R(O(F), 6) among all 6 E D, for which

inf S(O(F),6) > p,FE."

where p is a given fixed number.

To prove the main results, we need results from Eaton (1967) and from Lehmann (1961).

For sake of completeness, we state them.

Theorem 2.1 : Let the random variable X have density p0,(x);i = 1,2,... k, po(x) has

monotone likelihood ratio in x, and let R 1 (0,6) be as defined in Problem 1.

Let

Ba = {x: xi, xi2  ... Xi, V i E Sj V}

H(x) = {a: a E A ;X E B}.

And let

n(x) = number of elements in{a: a E H(x)}.

Define

6'(x,a) = if a E H(x) (2)
n(X)

= 0 otherwise. (3)

Then the rule 6' minimizes sup6 RI(0, 6) among all 6 E D.

Theorem 2.2 : Let X1, X 2 , X 3 ,. . . , Xk be the independent random variables with probability

densities pol (x), pO2 (x),. .. ,POk(Xk) respectively. Let po(x) has monotone likelihood ratio in

x. Define R(O, 6) and S(O, 6) as in Problem II, where 6 is a subset selection procedure. Let
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a 1 ( 6 s,. .., ks), where

6i., = I if Xi > c

= Ao ifX=c

= 0 otherwise.

W1here Ao and c are determined by the equation, Eoo+A61., = p, then the rule 6, minimizes

sup 0 R(O, 6) among all rules 6 E E), such that

inf S(0, 6) >! p,

where,

(01,2,. Ok) : Oj 0 z for some I

The supremnum of R(O, 6.) is attained at 0 = (0o, Oo,..., Oo) and the infrimum of S(O, 6,) is

attained at 0 = (Oo + 6,0o, ... ,Oo).

Let X1 , X 2 ,... Xk, be independent binomial random variables with parameters

(n, 01), (n, 02),..., (n, Ok) respectively. For 6,(.) = 6,(x),

sup R(O,b) n[P9o(X > c) + A P9o(X = c)] (4)
0E t

= h(Oo, A,p) say. (5)

Here c is a non-negative real number and A in (0, 1) are chosen such that,

P ,,+A(Xi > c) + A Poo+a(Vl = c) = p. (6)

If Y, is a sequence of binomial random variables with parameters (n, p), and as i -- . pi

converges to Po, then the sequence of Yj converges weakly to 1', we note that, for a fixed p.

h(Oo, A, p) is a continuous function of 00 and A.
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Making transformation on g, if necessary

g(x) g(x) - infg(x)
sup g(x) - infg(x)

and observing that

f[ag(x) + b] dF(x) = a O(F) + b

without any loss of generality we assume that

O < g(x) < 1V x E R P andsupg(x)=1, infg(x)=O.

Lemma 2.1 : If 5 E D, a subset selection procedure for Problem II and

inf S(O(F), ) > p,FE-F'

then

sup R(O, 6) h(0o, Ao, p),
FEY

where h(Oo, Ao, p) is as defined in (4).

Proof:

We know that infg(x)= 0 and supg(x) = 1. Let b E D). Fix e > 0, and get a and b

such that g(a) = c, , g(b) = - e2 and 0 < El + e2 < e.

Let Pi be the probability measure induced by a distribution function Fi. // Define

0 F Pi({b}) = pi; Pi({a})= 1pi 7)
0 < .pi l; for i=1,2. .. ,k

If F = (F1 , F2 ,... , Fk) E Fo, then

O, = O(F)

= 1 (1 - Pi) + (1 - e 2)Pi

= q+ (1 - - 2)Pi.
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Therefore, O(F) < 00 if and only if

Pi < 0-f
1 - €i-

and O(F) 0o + A if and only if

Pi >  - +
1- f1- f 2 1 E - fI 2

For i = 1, 2,. .. k , define

Ti =# {IX j : x j b j 1,2,. .. , n.}

Note that for a class of distribution functions Fo, the statistics T = (T1 , T2,... Tk) is a

complete sufficient statistics. We also note that T1 , T2,... , Tk are independent and they

have binomial distributions with parameters (n, pi), (n, p 2),..., (n,pk) respectively. Since

.Fo .F C F', and

inf S(O(F), 6) > pFEY: -

we have,

inf S(O(F), 6) > p.
yo nY

Also the binomial family possess the monotone likelihood ratio property. By Theorem 1.2.2

we have,

sup R(O(F), 6) > h( 0o - A ,p). (8)
FEYo 1- - 62' 1 - 2'

And since YT D F0.o we have,

sup R(O(F),6) sup R(O(F),6) (9)
FEY FE.Fo

Oo - 61
> h( CI ,p). (10)- 1-1- 1- I-

11



Since e > 0 is arbitrary, letting c - 0, we have

00 - 611 - El - E2

and

1 - EI - C2

As we noticed before h is a continuous function, letting f - 0, we get

sup R(O (F), 6) > h(0o, A, p). (11)
FEY

This completes the proof of the lemma.

Suppose that Xi has a binomial distribution with parameter (n, 9i), for i = 1,2,..., k.

Let

sup Ri(0, 6') = R, (12)

where 6' is as defined in (2).

Lemma 2.2 If 6 E D is a decision rule for the Problem I then

sup R,(O(F), 6) >_ R
FEY

where R is as defined in (12).

Proof:-

Fix E > 0 and get fl, E2  and a, b, )'o = Fo.1,, 2 ) and T = (T 1 ,T 2,... . Tk)

as in Lemma 1. Observe that TIT 2... ,Tk are independent binomial with parameters

(n, pi), (n, p2),..., (n, pk) respectively. Here 0i = O(F,) = c1 + (1 - c, - e2)Pi for each i,

0 < pi < 1 if and only if c, 5 0i < 1 - f 2. By Theorem 1 if 6 is any decision rule then,

sup R,(O(F), 6) sup R,(O(F), bo)
FEYo FE)Y
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where bo(x, a) = 6'(T, a) and 6' as defined by (2).

Since

sup R,(O(F),6) >_ sup R,(O(F), 6),
FEY FEY'0

we have

sup R,(O(F),b) _ sup R,(F, 6 0) = R(,,,,) say.
FEY FEyo,(e jf2)

For F E -F,

RI(O(F),6o) = j EF'(T,a) L(O(F),a).
aEA

The expectation of 6'(T,a) depends on F only through 0 = O(F) and 0 = (El + (I -

El- 2)pI,1l+(1-l-E2)P2,...,CI+(1- - 2 )Pk) --- (PI,P2,...,Pk) as E 1+ -2 -0. We

know that for every a E A, L(., a) is continuous over [0, 1]k, hence it is uniformly continuous

over [0, 11k . We have R(,1,, 2) -- R as F- + E2 1 0. Hence

sup R,(F, 6) >_ R, (13)
FEY

and this completes the proof of the lemma.

Let a random variavle X have a binomial distribution with the parameters (n, 0o + A).

Let c = c(p) 0 and A = A(p) E (0,1) such that,

P(X > c) + A P(X = c) = p.

Let Z1 , Z2 ,... Zk be the independent Bernoulli random variables with parameters

PI, P2,.. •Pk. Define,

(PIP2, Pk) = P(ZI + Z 2 ... Zk > c(p)) (14)

+ A(p) P(Z + Z2 ... + Zk =c(p)). (15)
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Let Z = (Zl, Z12,.. . , ZI,... , ZkI, Zk2,. .. Z) be a random vector. Components of Z

for X = (X11 , X 12.. .. X . ... XkI, Xk2,..., Xkn) are independent Bernoulli with

P(Zj = lIx) = g(Xij) V i, j.

Let T, = = Z1, ; T = (T1 , T2,... Tk). Let 6' be as in Theorem2.1 . Define

6"(x,a) = E(6'(T,a)IX = x). (16)

Theorem 2.3

(i) The decision rule 6"(.,.) = 5"(x, a) is a minimax rule for a class of loss functions defined

for the Problem I.

(ii) Let bi(x) = 0(g(xil), g(xi2), ... , g(xin)) ; for i = 1, 2..., k. Then the decision rule 5.

(61, 52,..., 5k) is a restricted minimax procedure for the Problem II.

Proof:

(i).

R,(O(F), 6")

= EF E 6"(X,a)L(O(F),a)
aEA

= Z [EFb"(X, a)]L(O(F), a)
aEA

= 1 E(EF6'(T,aIX = x)]L(O(F),a)
aEA

= E EF6'(T,a)L(O(F),a).
aEA

We notice that T1, T2,..., Tk are independent random variables. The marginal distribu-

tion of Ti is binomial with the parameters (n, O(F)) for i = 1,2,..... k.

Hence

sup R,(F,6") = sup [1: EF6'(T,a)L(O,a)]
fEY o<_0,<_I aEA

-R.
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By Lemma 1.2.2 the result follows.

(i).

Observe that b1(X), 62(X),... bk(X) are independent.

EFbi(X) = EFV)(g(xjj,g(xi2),. .. (Xi.))

= P(T > c(p)) + A(p) P(T = c(p)).

Here T1, T2 ,. .. , Tk are independent binomial with parameters (n, O(F1)), (n, O(F2)),...,

(n, O(Fk)) respectively.

For F E .Y,

S(O(F),5o() S(O(F),5,.)

where

b,(.) =,(T) and T = (TI, T2,...,TK).

The decision rule b, is as before and

R(O(F),b..) = R(O(F), 6,)

By the choice of c = c(p) and A = A(p) and by (11) we have

sup R(O(F),6..) = supR(9,6,)
FEY 0

= h(0o, -A,p)

and

inf S(O,65,) = inf S(O,6b)
FEY' OEW

- p,

and this completes the proof.
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Remark 2.1

Notice that the minimax procedures we have established are randomized. To avoid ran-

domization, for example in Problem I, we may take action a E A if 6'(x, a) > 6'(x, a') for

all a' E A. We feel that this procedure may be approximate minimax and will be more

useful in practical situations. However it is difficult to establish analytic properties of this

approximated procedure.

3 Discussion and Examples

In this section we consider a few examples (problems) and consider the Bayes rules with

respect to particular priors and see how different they are from the minimax rules.

Example 3.1

Nonparametric Bayes Procedures

Let 0, as defined before, be the parameter of interest. Let us suppose that we are interested

in selecting population 11 for which Oi is largest. Here

Oi = O(P) = Jg(t) dPi(t).

and Pi is a probability measure corresponding to population HI. Let for each i = 1, 2.... , k,

the probability measures P1, P 2,..., Pk are independently, identically distributed with com-

mon Dirichlet distribution D(a). The probability measure P on X" is said to have Dirichlet

distribution with parameter a if for any k, A 1, A 2 ,..., Ak is some measurable partition of X

then (P(A 1 ), P(A 2),... , P(Ak)) has Dirichlet distribution with parameters (a(A1 ), a(A 2 ) . o--W4).

See Ferguson (1973) and Ferguson (1974) for more discussion and for relative information.

Let the loss function be of the form

L(0, i) = maxj j - 0i.

16



That is the loss for selecting i - th population is maxjOj - Oi. Then according to the Bayes

rule we select the population Hi for which E(O(Pi)IX = x) is largest. Following Ferguson

(1973) we know that the posterior distribution of Pi follows a Dirichlet distribution with

parameter a + nP,,i. Hence the conditional expectation of 9i is

fXg d(a + nPi,,).

Hence E(O(Pi)IX = x) is largest if and only if 9i = n - I E'=i g(x,,) is largest. The procedure

we have established, will also select the ith population with high probability if 9i is large.

Example 3.2

Let Xil, Xi 2,.... Xi, be the observable random vectors from the population H, for i

1.2,... , k. Let Pi be the probability measure generated by the random variable Xil . Let

9i = Pi(A) be the parameter of interest. Let Xi = (Xi, Xi2,... XT,) and

n

Ti(Xi) = E IA(Xij).
j=1

Then according to the theorem above the procedure which ranks population [I, according to

the rank of Ti in T1 , T2,. .. , Tk is the minimax procedure for any permutation invariant loss

function. Here g(x) = IA(X) is an indicator function of set A.

We will show that this procedure is also Bayes procedure when Pi , i = 1,2,. k are

independently identically distributed with the Dirichlet prior. To see this, notice that the

posterior distribution of Pi(A) has beta distribution with parameter p = a(A)+nP,,,(..) and

q = c - p, for i = 1,2. . - k. Where c = a(X) + n, is a fixed constant. We also notice that if

a random variable Y has beta distribution with parameters p and c - p ( c is a fixed constant

) then y has a monotone likelihood ratio in p. From these facts it is straightforward to prove

that if L is any invariant loss function then the rule of ranking k population according to

ranks of T, i = 1, 2,...., k, is a Bayes rule, and hence it is admissible.

The same argument holds for the (restricted) subset selection procedures.
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4 Testing

Let XI, X2 ,...,X, be observable independent random vectors with a common distribution

function F on R P .

Let O(F) = fgdF be the parameter of interest, where g is a real-valued bounded

function on R P such that supg(x) = 1 and infg(x) = 0. We will construct "optimal"

tests for testing the hypothesis,

Ho: O(F) E 0 0  Vs HI: O(F) E E1 .

Here E =0' and 00 is of the form {0 : 0 < Oo} ,{0:0>o} or {0:0=0o}.

Comparison between the tests of level a is made on the basis of the "power" of the test.

The power of a test 00 at F for O(F) E 01 , Pr(Oo Rejects HoIF) is a function of F

and not O(F) alone. We will take a conservative view to choose the test. We will select the

test of level a , which maximizes the minimum power. We need the following definitions.

Definition 4.1 The function 0l(0) = 04(0) is called a minimum power function of the test

¢,if

SF(0) = inf Pr(¢ Rejects H0 IF)F: 0(F)=9

Definition 4.2 The test € of the level a is said to be the least uniformly most powerful

test ( L UMP ) if for any test €' of level level a,

3,(9) >__ O) V 9 E 01.

Definition 4.3 The test 0 of level a is said to be the least uniformly most powerful

unbiased test ( LUMPU ) of level a if

/j(0)>a V 0E E

18



and if 0' is any other test of level ca with

'30, >2 a V 0 E 01,

then

Oo(9) i3 Oo4O) V O E ()I.

Let

h(pp,2,. ,p.) = Pr(ZI + Z 2 +... + Z,, > c) + A P(ZI + Z 2 +... + Z, = c).

where Zi, Z2,..., Z,, are independent Bernolli with parameters PIiP2,-. . ,pn respectively.

A = A(a) and c = c(a) are chosen such that, if Z is a binomial random variable with

parameters (n, 0) , then

Pr(Z > c(a) + A(a)P(X = c(a)) = a.

Theorem 4.1 For testing

Ho :O(F) < Oo Vs Hi :O(F) > 00

the test O() = h(g(X1 ),g(X2 ),... ,g(X,)) is a least uniformly most powerful test.

Proof:

Let us fix an arbitrarily small e >0, get a ,b E RP such that g(a) = e, ,g(b)= 1-2

and e, + f2 < c Let

.f= F: =I-pVae [a,b) 1
lVx>b
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For the class .To , T = #IXi Xi = b} is a sufficient statistics and have a binomial

distribution with the parameters (n,p), where

O(F) = ci(l-p)+(+ -e 2 )p

= El + (1 - - C2)P

and 0 > 00 if and only if
00 - E1

P 1- 2 P ( ',1,2) say.

For the class Fo the UMP test is 0 1(T) , where

pI(T) = 1 if 0> c('E,( 2 )

= A(61,c 2) if T =c(l,c2)

= 0 if T<T=c(I, E 2 ).

The constant c = c(fl,C2) and A = A(f1,f 2) are chosen such that, Pr(X > c) +

A P(X = c) = a , where X is a binomial random variable with parameters (n,p(f1,, 2)).

Power of the test 41(T) at 0 = 01 > Oo is Pr(T > c(1, E2)) + A(ci, c2) Pr(T = c(q, E2)). Let

,1 + el 00- , a) = Pr(T > c(c,, f 2)) + Pr(T = C(',, -2)).
1 - C1 - 12 - -1 E2

So, if z' is any test of level a , then

,3o, (0) = inf Pr(4' Rejects HoIF)
F:O(F)=Ol

< inf Pr(O'Rejects HoIF)
-(F)=01 , FEYo

<1 +( lz0 - El
- h(1- - 2 1-- fl - 2 El )

\Ve know that h, is a continuous function, letting c -* 0 , we have

30,(0l) <_h(01,Oo, a)

Pr(6 rejects H0 IF) = EFd(g(X1 ),g(X 2), ... g(X,))
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= Pr(Zi +Z 2 +...+Z, >c)

+ A Pr(ZI + Z2 + ... + Z, =" c).

Here Z1 , Z 2,. .. , Z are independent Bernolli with common parameter O(F)

Hence

o(01) = h(O1, Oo, a)

that is

00401) :53 00) V 01 > 0o.

This proves the theorem.
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